
Ethernet Diagnostics
IRM options

Robert Goodwin
Thu, Oct 3, 2002

The IRM ethernet driver supports several diagnostics that can assist diagnosing network
problems. This note summarizes various diagnostics that are available in these 68040-based
front ends. Most of these tools are unavailable in the PowerPC nodes, because the vxWorks
kernel supports all network activity. The exceptions are noted in the text.

Network Frames
All nodes are set up to include the NETFRAME data stream support, which records all

network activity seen by the node. One usually views this data via the page application
called PAGENETF that is normally found on Page F of the “little consoles.” One can view UDP
datagrams, ICMP and IGMP packets, IP fragments, and ARP messages. (This data stream
support also exists for PowerPC nodes, and one can view UDP datagrams in this way.) Here
is an example of network activity captured from node0600, the Linac server node, through
which nearly all Acnet requests for Linac data pass.

SrcN Size T ^Frame HrMn Sc Cy+ms
A62F 0016 R E6D27A 1359:41-00+13 15 Hz data from contributing nodes
A62D 0060 R E6D2A2 1359:41-00+14 in response to active periodic requests
A611 0016 R E6D316 1359:41-00+14 etc
A610 001A R E6D33E 1359:41-00+14
A625 006E R E6D36A 1359:41-00+14
A622 006E R E6D3EA 1359:41-00+14
A623 006E R E6D46A 1359:41-00+14
A624 006E R E6D4EA 1359:41-00+14
A626 006E R E6D56A 1359:41-00+15
A621 006E R E6D5EA 1359:41-00+16
A627 006E R E6D66A 1359:41-00+16
A620 00A4 R E6D6EA 1359:41-00+17
A92E 0208 R E6D7A2 1359:41-00+17 New RETDAT request from cns46
A9FC 0208 T E935D4 1359:41-00+18 Multicast to all Linac nodes
A600 0208 R E6D9BE 1359:41-00+18 Receive own multicast
A613 0016 R E6DBDA 1359:41-00+19 First of 15 contributing node replies
A611 001A R E6DC02 1359:41-00+20 etc
A614 0016 R E6DC2E 1359:41-00+20
A612 0016 R E6DC56 1359:41-00+20
A615 003E R E6DC7E 1359:41-00+20
A622 0016 R E6DCCE 1359:41-00+20
A625 0016 R E6DCF6 1359:41-00+21
A627 0016 R E6DD1E 1359:41-00+21
A623 0016 R E6DD46 1359:41-00+21
A626 0016 R E6DD6E 1359:41-00+21
A624 0016 R E6DD96 1359:41-00+21
A61C 009C R E6DDBE 1359:41-00+21
A621 001A R E6DE6E 1359:41-00+21
A62D 001A R E6DE9A 1359:41-00+21
A61E 0016 R E6DEC6 1359:41-00+21 Last contributing node reply
A92E 008E T E937EE 1359:41-00+21 Return composite reply to cns46
A921 003C T E9388E 1359:41-00+48 Usual periodic replies
A9E8 0022 T E938DC 1359:41-00+48 etc

Each line represents a datagram that was either transmitted or received, and the node is
specified in terms indicating a native node number, with the first digit A representing the
Acnet protocol port. When a native node number does not apply, the Acnet node number is
specified, such as 92E (trunk 9, node 46) for cns46. The apparent one-shot request was
turned around in this example in only 4 ms from the time node0600 received the request
from cns46, in spite of the fact that it had to gather data from 15 other front ends before it
could deliver the reply. (The times are shown in HrMn:Sc-Cy+ms format, indicating time
within a particular 15 Hz accelerator cycle down to millisecond resolution.)

Interrupt timing
Recent diagnostics added support measuring particular interrupt activities, including

ethernet transmit and receive activitiess separated out. The interrupt timing table (ITT) is
located at low memory address 0x800, with a total length of 512 bytes. A 32-byte header is
followed by as many as thirty 16-byte entries. The entries have the following format:

Field Size Meaning
id 1 Identifier for this entry
flgBit 1 Flags in hi nibble, LED bit# in low nibble.
count 2 Activity counter
elapsed 4 Elapsed time
base 4 Base time for measuring elapsed time
cycle 4 Time of interrupt within current 15 Hz cycle.

Here is an example of what the ethernet entries look like, captured at random:

000860 E000 9A82 0000 0013 Ethernet Output
000868 9EDC C237 0000 0AA0

000870 E100 1F76 0000 0039 Ethernet Input
000878 9EAC 9150 0000 AA31

000910 EC83 BA04 0000 002F Ethernet Complete
000918 9EDC C222 0000 0A8B

Watching this area of memory gives a rough idea of ethernet interrupt activity, including the
elapsed time to perform it. All timings are in microseconds. The last one indicates that
interrupt LED #3 is used for exhibiting Ethernet Complete activity, which is the entire
duration of the ethernet interrupt routine. (The Ethernet Output and Ethernet Input measure
only the time of Output or Input processing, respectively, within the interrupt routine.)

One can perform related timing tests by modifying the flags nibble. As mentioned already,
the flags value of 8 specifies using a LED to make the activity externally visible. A value of 4
alters the elapsed time to measure the time between successive activities. The value 2
specifies keeping the maximum duration in the elapsed time field (or the minimum time
between successive activities if the flag value of 4 is also set). The value 1 specifies that the
elapsed time records should also be logged in the data stream called ITTLOG.

Ethernet Interrupt Times
This is an older version of ethernet interrupt timing that is also available. It is located

at low memory address 0x4C00 and has a size of 1024 bytes. Each entry is 8 bytes long and

Ethernet Diagnostics p. 2

uses the following format:
Field Size Meaning
status 2 Status word from System Command Block
cycCnt 2 Cycle counter, low word of CYCLECNT global variable
cycTime 2 Time in present 15 Hz cycle, in 0.5 ms units
elapsed 2 Elapsed time in interrupt routine, in microseconds

Here is an example showing entries that resulted when a device name lookup was initiated:

 :00004EC8 6040 B1D6 0007 0074 Multicast name query
 :00004ED0 4040 B1D6 001E 0044 Response from node0611
 :00004ED8 6040 B1D7 000A 0070 ARP request
 :00004EE0 4040 B1D7 000B 0040 ARP reply
 :00004EE8 2040 B1D7 000D 0033 Device data request
 :00004EF0 4040 B1D7 001D 0045 Device data replies
 :00004EF8 4040 B1D8 001B 004A etc.
 :00004F00 4040 B1D9 001B 004E

The upper 4-bit nibble of the status word indicates that the interrupt was due to a received
frame (4), a transmitted frame (2), or both (6). The second nibble indicates the status of the
Command unit in the ethernet chip (intel 82596), which includes transmit commands; a value
of 0 means the Command unit is idle. The third nibble indicates the status of the Receive unit;
a value of 4 indicates that the Receive unit is ready. The name lookup query is indicated in
the first entry shown, where the node sending the query also received its own multicast
query message. The second line shows the response from the node having the named device.
The third line shows the ARP request, which is followed by the ARP reply. The fifth line
shows the query for device data as initiated by the parameter page application. This is
followed by the immediate first reply, then by additional replies occurring at a 15 Hz rate.

Ethernet Receive Unit Not Ready
As a result of an early experience encountering a condition of Not Ready status for the

Receive unit, caused at that time by receiving a frame more than 1500 bytes in length, this
diagnostic was added in case it occurs again. This table is based at 0x6000 and is 1024 bytes
in size. The first 8 bytes of each 64-byte entry hold the usual BCD time-of-day, followed by
the 16-byte RFD (Receive Frame Descriptor), followed by the first 40 bytes of the received
frame. The system restarts the Receive unit if this condition is detected. For further details,
refer to the ERUREADY code in the Ethernet.a source module.

Ethernet Receive timing
This diagnostic focuses on the number of receive frames processed within one ethernet

interrupt activity. It is located at 0x6400, with a size of 1024 bytes. An 8-byte header includes
the current offset word to the next entry, a byte containing the maximum number of frames
processed during one interrupt, and 5 bytes that show the time when this maximum count
was last increased, specified in Mo-Da-Hr-Mn-Sc. Each 4-byte entry consists of a byte count of
frames received in one interrupt, and a 3-byte microsecond elapsed time since the previous
such receive frame interrupt. Here is an example of such data:

 :000064E0 01 0509E4 01 02D9D8
 :000064E8 01 00A20A 01 021BED
 :000064F0 02 05F5D5 00 000080
 :000064F8 01 09C5A9 01 06391B

Ethernet Diagnostics p. 3

 :00006500 01 06A2FC 01 0270C0
 :00006508 01 033319 01 02D8C3
 :00006510 01 13C9EA 01 005DF0
 :00006518 01 037876 01 00571F

Most of the time, only one received frame is processed per interrupt. But one entry shown
here indicates that two frames were proceed in one interrupt, followed by an entry that
indicates that no receive frames were processed. This may result from the second frame
arriving while the first frame was being processed. With the interrupt having been cleared
early in the interrupt routine, the ethernet chip caused another interrupt, but by the time the
interrupt routine finished processing both frames, there was nothing more to do.

Foreign Node Capture
Another diagnostic captures unusual accesses via IP, which means here at Fermilab

that a node sent an IP datagram from outside the lab. In this case, “outside the lab” indicates
that the source IP address is something other than 131.225.x.x. Recently, entries were seen
in this table, located at 0x6800 with size 2048 bytes, in which the source IP address was
actually a multicast IP address, which is clearly invalid. The captured part of the frame
showed these datagrams to be ICMP “port unreachable” messages that were apparently sent
by some unsophisticated nodes embedded in commercial equipment. The idea of this
diagnostic is to record the kinds of accesses made by nodes outside our lab. The records in
this table are 128 bytes long, with the first 8 bytes being the time-of-day of a first access,
followed by the first 56 bytes of the initial IP datagram (beginning with the IP header),
followed by a count of the number of accesses (using a 30-second timeout), followed by a
timeout counter, followed by the 5-byte time-of-day of the final access, as Hr-Mn-Sc-Cy-00,
finally followed by up to 56 bytes of the final IP datagram received. Here is an example:

0602:006980 0209 2312 3417 0900 first access at 09/23/02 1234:17
0602:006988 4500 0025 F517 0000 first IP header, datagram
0602:006990 7001 2855 420D E3AE IP address 66.13.227.174
0602:006998 83E1 83CE 0800 CE5C ICMP ping request
0602:0069A0 0300 6471 6865 6C6C
0602:0069A8 6F20 3F3F 3F00 0000
0602:0069B0 0000 0000 0000 00F0
0602:0069B8 003C 0000 0E4E 0C00

0602:0069C0 0002 0012 3422 0000 2 accesses, final at 1234:22
0602:0069C8 4500 0025 F5A7 0000 final IP header, datagram
0602:0069D0 7001 27C5 420D E3AE ICMP ping request
0602:0069D8 83E1 83CE 0800 6F5C
0602:0069E0 0300 C371 6865 6C6C
0602:0069E8 6F20 3F3F 3F00 0000
0602:0069F0 0000 0000 0000 00D4
0602:0069F8 0035 0000 0E4D 0C00

Ethernet variables

In addition to the diagnostic tables described above, there are a number of variables
maintained by the system code that relate to ethernet communications. First are the static
variables maintained by the ethernet driver. These are located at 0x160000, of size 160 bytes.
For easy correlation with the Memory Dump page, the fields are separated every 8 bytes, and
also every 64-byte page.

Ethernet Diagnostics p. 4

Offs Field Size Meaning
00 SCBSTAT 2 Status word from 82596

SCBCMND 2 Command word for 82596
SCBCPTR 4 (ws) ptr to command block list

08 SCBRPTR 4 (ws) ptr to receive frame area
SCBNCRC 4 #CRC errors

10 SCBALGN 4 #alignment errors
SCBRSRC 4 #resource errors

18 SCBOVRN 4 #overrun errors
SCBCOLL 4 #collisions

20 SCBSHRT 4 #short frames
SCBTOFF 2 t_off
SCBTON 2 t_on

28 SCBNOTC 4 CFN interrupt without C bit set
RCVBADF 4 Bad frame received

30 RCVBADC 4 No F bit set in RFD
RCVBADL 4 Bad length received

38 SCBCINT 4 #Command interrupts
SCBRINT 4 #Receive interrupts.

* -----------------------
40 RCVINVM 6 Invalid multicast address

RCVINVC 2 Invalid multicast address counter

48 SAPQERR 2 Error from Send_X call
SAPQAUX 2 Error status code
UIZSAP 2 Count uninitialized SAP received
UIZSAUX 2 SAP value

50 BADSAP 2 Count unknown SAP value
BADSAUX 2 Unknown SAP
SPARERR 2 spare
SPARAUX 2 spare

58 SRCADRC 2 Count invalid source address
SRCADRA 6 Record invalid network address

60 ERCVCUR 4 Ptr to next RFD to be processed
SPURINT 4 Count of spurious interrupts

68 EINTCNT 4 Count of interrupts (total)
EBUSCNT 4 Count of bus error interrupts

70 EBUSCOD 1 Error code byte from status register
3 spare

XMTCOLL 4 Collisions from status word in transmit command

Ethernet Diagnostics p. 5

78 XMTSTAT 2 Transmit status word last collision
XMTADDR 6 Destination address last collision

* -----------------------
80 EITIMEO 2 Offset into interrupt times diagnostic array

ERUDCNT 2 Delay after re-init Receive Unit
ERUDIN 2 Offset to next entry in Receive Unit diagnostics
ERUDTOT 2 Receive Unit not ready status total count

88 ESPARE 24 spare
A0 (end)

Here is an example that illustrates some of these variables:

0509:160000 0040 0000 B5C0 0019 word-swapped ptr to command block list
0509:160008 0200 0016 0000 0000 word-swapped ptr to receive frame area
0509:160010 0000 0000 0000 0000
0509:160018 0000 0000 0000 0000
0509:160020 0000 0000 0019 00AF
0509:160028 0000 0000 0000 0000
0509:160030 0000 0000 0000 0000
0509:160038 0000 ADE7 001B DA41 #command ints, #receive ints.

0509:160040 3333 FF98 99A6 0008 invalid multicast address, counter
0509:160048 0000 0000 0000 0000
0509:160050 6BE2 00E0 0000 0000 unknown SAP counter, value
0509:160058 0000 0000 0000 0000
0509:160060 0016 5600 0000 0128 ptr to next RFD to process, spurious cnt
0509:160068 001C 82EE 0000 0000 #interrupts (total)
0509:160070 0000 0000 0000 0018 #collisions from status word in xmit cmnd
0509:160078 2001 0030 7B92 C170 status word last collision, net address

0509:160080 01D8 0000 0000 0000 offset into EITimes array
0509:160088 0000 0000 0000 0000
0509:160090 0000 0000 0000 0000
0509:160098 0000 0000 0000 0000

SNAP variables
The SNAP task supports IP protocols, and it uses a number of variables. Here is the

layout of this structure:

Offs Field Size Meaning
FFD4 FNCAPO 2 Foreign node capture buffer offset to next record

FNCAPTC 2 Foreign node capture timer countdown period

FFD8 FNCAPNT 4 Foreign node capture total number of records written
ARPREQI 4 ARP request ignored counter

FFE0 ARPREQC 4 ARP request for this node counter
ARPRPYC 4 ARP replies counter

FFE8 ICMPCNT 4 ICMP received counter
IPSNAPC 4 IP using SNAP on ethernet counter

Ethernet Diagnostics p. 6

FFF0 IPSNAPA 4 IP using SNAP on ethernet source IP address
ARPSNAPC 4 ARP using SNAP on ethernet counter

FFF8 ARPSNAPA 4 ARP using SNAP on ethernet source IP address
NETFDSX 2 Data stream index for net frame diagnostics
NETFDSS 2 Error return status from DSWrite call

* --------------------------
* Frame message queue buffer (6 longwords)
0000 FMRSVD 4 reserved

FMHOME 4 home xid

0008 FMSIZE 2 Frame contents size
FMMSGC 2 Frame message count
FMSOURCE 2 Offset to source address
FMDEST 2 Offset to destination address

0010 FMPTR 4 Ptr to frame contents
FMSRCN 2 Pseudo source node#
FMIPOFF 2 Offset to IP header

*
0018 SNAPXID 4 SNAP queue id

SNAPCREE 1 Error return from Create_X call
ETHERF 1 Ethernet flag
SNAPREQE 2 Error return from Req_X call

0020 BADOERL 4 Unknown organization id
BADOERC 2

0026 SRCNETA 6 Source network address
IPHLNG 2 IP header length

002E BADIPERR 4 Invalid destination IP address
BADIPERC 2

0034 FMSIZERR 2 Bad frame size
FMSIZERC 2

0038 UPEVERR 2 UDP Signal_V error code
UPEVERC 2
UPSQERR 2 UDP Send_X error
UPSQERC 2

* --------------------------
0040 UPCKERR 2 UDP checksum error

UPCKERC 2
BADPERR 2 Unknown protocol type
BADPERC 2

0048 UIZPERR 2 Uninitialized port#
UIZPERC 2
TCPPERR 2 TCP unsupported yet
TCPPERC 2

0050 UNKPERR 2 Unexpected protocols besides TCP
UNKPERC 2
TTLERR 2 Invalid TTL value
TTLERC 2

0058 IPFOERR 2 IP fragment offset nonzero
IPFOERC 2
IPFLERR 2 IP fragment length invalid
IPFLERC 2

Ethernet Diagnostics p. 7

0060 IPCKERR 2 IP checksum error
IPCKERC 2
IPVNERR 2 IP version# error
IPVNERC 2

0068 ARPOERR 2 Unsupported ARP operation
ARPOERC 2
ARPLERR 2 Unexpected address lengths
ARPLERC 2

0070 ARPPERR 2 Unexpected ARP protocol type
ARPPERC 2
ARPHERR 2 Unexpected hardware type
ARPHERC 2

0078 ICCKERR 2 ICMP checksum error
ICCKERC 2
ICPUERR 2 Port unreachable error
ICPUERC 2

* --------------------------
0080 ICTCERR 2 ICMP type/code not supported

ICTCERC 2
ICEVERR 2 ICMP Signal_V error code
ICEVERC 2

0088 ICSQERR 2 ICMP Send_X error status
ICSQERC 2
IGCKERR 2 IGMP checksum error
IGCKERC 2

0090 LAPROERR 2 Local appl for UDP port inaccessible
LAPROERC 2
DSTPORTN 4 Dest UDP port# as taskName

0098 DATAGRAM 4 Ptr to completed datagram block from FrgIPARP.

Here is an example of these variables:

 :0004CE10 xxxx xxxx xxxx xxxx
 :0004CE18 xxxx xxxx xxxx xxxx
 :0004CE20 xxxx xxxx 0780 001E Foreign node capture offset, countdown.
 :0004CE28 0000 005F 000C FEA6 Foreign node capture count, #ARPs ignored
 :0004CE30 0000 0002 0000 00ED #ARP requests for this node, #ARP replies
 :0004CE38 0000 003D 0000 0000 ICMP received count 003D
 :0004CE40 0000 0000 0000 0000
 :0004CE48 0000 0000 0000 0000

 :0004CE50 0000 0000 0000 0000 FMRSVD, FMHOME
 :0004CE58 0020 FFE4 FFFC FFF6 FMSIZE, FMMSGC, FMSOURCE, FMDEST
 :0004CE60 0017 941A 0000 0000 FMPTR, FMSRCN, FMIPOFF
 :0004CE68 0002 05FA 00FF 0000 SNAP queue id
 :0004CE70 0000 0000 0000 0240 source net address 0240 0000 0593
 :0004CE78 0000 0593 0014 83E1 IP hdr lng, invalid dest IP 83E17DFF
 :0004CE80 7DFF 1D52 0000 0000 invalid dest count = 1D52
 :0004CE88 0000 0000 0000 0000

 :0004CE90 0000 0000 8137 1986 unknown protocol type 8137, count
 :0004CE98 0043 B85A 0006 05B1 unknown port 43, count, TCP, count
 :0004CEA0 0000 0000 0000 0000
 :0004CEA8 0000 001B 0000 0000 invalid TTL value, count

Ethernet Diagnostics p. 8

 :0004CEB0 0000 0000 0000 0000
 :0004CEB8 0000 0000 0000 0000
 :0004CEC0 0000 0000 0000 0000
 :0004CEC8 0000 0000 0000 0000

 :0004CED0 0A00 0003 0000 0000 unknown ICMP type/code 0A00, count
 :0004CED8 0000 0000 0000 0000
 :0004CEE0 0000 0000 0011 1A90 dest UDP port# as taskname 00111A90
 :0004CEE8 0003 9C78 0000 0000

Broadcast diagnostics
Another class of diagnostics captures records of several kinds of broadcasts. Each kind

is selected by storing a key word value in the first word of the memory used for this purpose
at 0x5000, with size 1024 bytes. Besides the 2-byte keyword value, the header includes a 2-
byte count of active entries, and a 4-byte total count. Each entry following the header is 8
bytes in length, the format of which depends on the type of diagnostics chosen. Each type is
described in turn:

Type ‘AR’ = 0x4152
This type monitors ARP requests received. Each 8-byte record indicates the sender’s IP

address, the operation code (1=ARP, 3=RARP), and a counter.

Type ‘11’ = 0x3131
This type monitors ARP requests from 131.225.1.1 specifically. Each record indicates

the sender’s IP address, the ARP/RARP operation code, and a counter. (This type was
installed long ago when a network problem occurred that presumably no longer exists.)

Type ‘BC’ = 0x4243
This type monitors non-IP broadcasts. The 8-byte record format includes the 6-byte

network address and a counter.

Type ‘MC’ = 0x4D43
This type monitors datagrams received via multicast that are not registered in the

multicast table at TRING+0x240, or 0x405240. Each entry includes the 6-byte multicast
network address followed by a counter.

Here is an example of this kind of diagnostic, with the keyword set to ‘AR’ = 0x4152 to
monitor ARP request activity.

 0509:00005000 4152 002C 0000 021E 2C active entries, total count = 21E
 :00005008 83E1 88C8 0001 0048 popular ARP requester .136.200
 :00005010 83E1 7B34 0001 0021
 :00005018 83E1 8896 0001 0020
 :00005020 83E1 8801 0001 004C popular ARP requester .136.1
 :00005028 83E1 887F 0001 0001
 :00005030 83E1 7B97 0001 002A popular ARP requester .123.151
 :00005038 83E1 8872 0001 0002
 :00005040 83E1 7B08 0001 0001
 :00005048 83E1 7BC8 0001 0015
 :00005050 83E1 7B01 0001 0017
 :00005058 83E1 10A8 0001 0014
 :00005060 83E1 7D83 0001 0003

Ethernet Diagnostics p. 9

 :00005068 83E1 10C8 0001 0093 popular ARP requester .16.200
 :00005070 83E1 88FD 0001 0002
 :00005078 83E1 7B80 0001 0003
 :00005080 83E1 7DC8 0001 0011
 :00005088 83E1 1089 0001 0004
 :00005090 83E1 7D93 0001 0002
 :00005098 83E1 1083 0001 0006
 :000050A0 83E1 7BF2 0001 0001
 :000050A8 83E1 7DD7 0001 0001
 :000050B0 83E1 7DBB 0001 0002
 :000050B8 83E1 7D7D 0001 0002
 :000050C0 83E1 104B 0001 0001
 :000050C8 83E1 8878 0001 0005
 :000050D0 83E1 105B 0001 0001
 :000050D8 83E1 1008 0001 0001
 :000050E0 83E1 7B2F 0001 0001
 :000050E8 83E1 7BF5 0001 0001
 :000050F0 83E1 883D 0001 0002
 :000050F8 83E1 7B43 0001 0002

The ARP requesters pointed out above are
131.225.136.200 vlan3.r-ad-6509-xgc108-1.fnal.gov
131.225.16.200 vlan3.r-ad-6509-xgc108-1.fnal.gov (same)
131.225.136.1 beamssrv1.fnal.gov
131.225.123.151 beams-pdc.fnal.gov

The first two are apparently a router used by Beams division. It is of course natural that a
router should make lots of ARP requests.

Frame Monitor local application
There is a local appplication called FMON that can be used to capture selected network

frame activity. Its parameters specify an area of memory to use for a circular buffer, which is
often chosen to be based at 0x300000, using the 4th megabyte of an IRM’s 4 MB memory. A
target node number is also specified, and one can elect to capture frames being sent from the
local node to the target node, frames received by the local node from the target node, or both.
In addition, one specifies a word offset from the start of the frame, because the amount of
data captured is limited. Each 64-byte record starts with the usual 8-byte time-of-day,
followed by up to 56 bytes of frame contents, beginning at the specified word offset. If the
offset is 7, for example, it means that the 14-byte ethernet frame header is skipped. If the
offset is 17, or 0x0011, then both the frame header and the IP header are skipped, so that the
captured frame contents begin with the 8-byte UDP header. The time-of-day fields show time
down to the half millisecond of the given 15 Hz cycle. Since IP node numbers are pseudo
node numbers, one may need to consult the contents of the IPARP table in order to come up
with the pseudo node number of interest. To make this step easier for capturing Acnet
protocol frames, one can specify an Acnet node number, and the pseudo node number will
be worked out automatically.

RETDAT Log
Acnet RETDAT requests are logged in a data stream called RETDLOG, if it is defined

inside a node. The 16-byte entries are comprised of the following fields:

Ethernet Diagnostics p. 10

Field Size Meaning
node 2 node number from which request was received
bytes 2 #reply bytes expected, including 2-byte status word(s)
dev 2 #devices in request
ftd 2 frequency-time descriptor
msgId 2 message id from Acnet header
time 6 time-of-day request received, as Da-Hr-Mn-Sc-Cy-ms

The main purpose of this diagnostic is to show the timing of RETDAT requests and what kind
of requests they are. (This diagnostic also exists in the PowerPC nodes.) For example, an ftd
value of 0000 means a one-shot request, which is very common. An ftd value of 003C
would be used for a request that asks for 1-second replies. A cancel message is recorded as a
special record in which the bytes, dev, and ftd are all 0000. Use the msgId field to associate
a cancel with a prior request.

One can apply filtering to the logging in order to select requests from certain nodes. To do
this, find the “user area” portion of the data stream queue header, which consists of 4 words
that can be set to Acnet node numbers of interest. By default after system initialization, all
four words are zero. But if the first word is set nonzero, it means that the inclusive mode of
filtering is used, so that a request from any of up to 4 nodes specified will be logged, while
requests from nodes not specified will be ignored. If the first word is zero, but one or more of
the other words are nonzero, then the exclusive mode of filtering is used, so that a requesting
node matching any of up to 3 nodes specified will be ignored, and a request from any node
not listed will be logged. The data stream queue is usually located at 0x9000, with a size of
4096 bytes, so that the user area is found at 0x9018. Here is an example of some of such
records as sampled from node0600, which receives lots of Acnet requests.

 :00009560 092E 00F0 003C 0000 6402 0313 1501 0030
 :00009570 0901 0010 0004 0000 440C 0313 1501 0030
 :00009580 0908 0004 0001 0000 4003 0313 1501 0865
 :00009590 0905 0010 0004 0000 A802 0313 1502 024F
 :000095A0 0B21 0028 000A 0000 AB00 0313 1503 0433
 :000095B0 091E 0004 0001 0000 C40F 0313 1504 1435
 :000095C0 0908 0004 0001 0000 3403 0313 1505 1463
 :000095D0 090C 0004 0001 0000 8001 0313 1509 0031
 :000095E0 091C 0014 0005 0000 B002 0313 1511 0004
 :000095F0 092E 007C 001F 0000 6002 0313 1511 0024
 :00009600 09E8 0004 0001 003C 942D 0313 1511 1284 <--
 :00009610 0908 0004 0001 0000 2003 0313 1512 0864
 :00009620 090D 0004 0001 0000 0404 0313 1515 0024
 :00009630 09E8 0000 0000 0000 942D 0313 1515 0455 <--

During the 15 seconds of RETDAT request activity logged here, most entries seem to be
one-shot requests, likely initiated by data logger clients. This brief snapshot does show a 1-
second request (using msgId = 942D) from node 09E8, which is cfss, that was canceled about
3.5 seconds later.

Task activity
Although not limited to ethernet diagnostics, a data stream called TASKLOG is often

implemented in front ends. In a similar way that the NETFRAME data stream captures network
datagram activity, as described early in this document, TASKLOG captures all task activity in a

Ethernet Diagnostics p. 11

system. (This is also supported for PowerPC nodes.) Here is an example of task activity
featuring some network-related support.

Task Evnt ETim HrMn:Sc-Cy+ms
QMon 0000 .11 1721:55-10+ 0
Updt 0000 4.17 1721:55-10+ 0 Normal data pool update, including BLMS
QMon 0001 .21 1721:55-10+ 4
DTim 0000 .07 1721:55-10+ 5
Alrm 0000 .16 1721:55-10+ 5 Alarm scanning
Appl 0000 .29 1721:55-10+ 5 Page application
Updt 0000 .1 1721:55-10+ 5
QMon 0000 .06 1721:55-10+ 5
IDLE 0000 25.33 1721:55-10+ 5
SNAP 0000 .32 1721:55-10+31 Request arrival, IP processing
ANet 0000 .13 1721:55-10+31 Acnet dispatching
ACRq 0000 .54 1721:55-10+31 RETDAT handling
Updt 0000 1.1 1721:55-10+32 Build reply
QMon 0000 .18 1721:55-10+33 Clean up
IDLE 0000 .3 1721:55-10+33
SNAP 0000 .9 1721:55-10+33 (unrelated request arrival)
ANet 0000 .15 1721:55-10+34 (Acnet dispatching)
ACRq 0000 .23 1721:55-10+34 (RETDAT handling, ignored)
IDLE 0000 5.68 1721:55-10+34
Cons 0000 .07 1721:55-10+40
Serv 0000 .13 1721:55-10+40
Updt 0000 .11 1721:55-10+40
QMon 0000 .25 1721:55-10+40
IDLE 0000 26.09 1721:55-10+41

SrcN Size T ^Frame HrMn:Sc-Cy+ms
A562 0040 R 165C22 1721:55-10+31 Request received
80FF 0018 T 18E90A 1721:55-10+32 Reply ready, but ARP request first
A6CF 0032 R 166822 1721:55-10+33 (unrelated request received)
0562 0018 R 166E22 1721:55-10+33 ARP response
A562 042C T 18E93C 1721:55-10+34 Send reply

For this example, a request for 1024 bytes of waveform data from a Booster beam charge
signal was issued as a one-shot request. Both the task level processing and the corresponding
network diagnostics are indicated in support of this request. At the task level, the request
was handled in 2.27 ms, although at the network level, we see 3 ms, in part due to the test
request being a surprise, so that an ARP request was needed to obtain the 6-byte network
address of the requesting node in order to deliver the reply. An unrelated request was
received from the Booster server node, which was ignored, since we see no further task
activity resulting from its RETDAT processing. From the task level processing, we can see that
in this same 15 Hz cycle, the CPU was only 14% busy.

References
A number of other documents relate to subjects covered in this one. For detail on the

ethernet chip used in the MVME-162 boards, see the intel document “32-bit LAN Component
User’s Manual.” Other documents concerning particular diagnostic support are:

Network Frames Page, Built-in network diagnostics

Ethernet Diagnostics p. 12

Network Diagnostic, Page application addition
Network Diagnostics, What tools are available?
Ethernet Receive Failure, Analysis of problem
Ethernet Receive Timing, Diagnostic table
Foreign Node Capture, Network diagnostic
Low Memory Layout, 10/27/00
Interrupt Timing, Implementation
Task Timing for IRMs, Diagnostic tool for pSOS
Task Activity Analysis, Page application
Network Frame Monitor, Local application
FMON Addition, Setup facility

Source code documents, of course, are behind all IRM code execution.

System code modules:
Name Support
Ethernet.a Ethernet driver, interrupts, diagnostics
ITTStart.a Interrupt timing table
Switch.a Task switch hook
SNAP.a Internet protocols
ACReq.a RETDAT

FMON.p Frame Monitor capture (local application)

NETF.p Network frames listing (Page F)
TASK.p Task activity listing (Page ?)
PMEM.p Print memory (Page H)
MDMP.p Display memory contents (Page M)

For the PowerPC system support, several similar modules exist, as follows:
Name Support
ITTStart.c Interrupt timing table
TrigTask.c Task switch hook, vmeSwitchHook()
socketReadControl.c Datagram diagnostic logging, calls recvfrom()
socketWriteControl.c Datagram diagnostic logging, calls sendto()
foreignNodeCapture.c Foreign node capture logging
ACReq.c RETDAT
LOOPFMON.c Frame Monitor capture
PAGENETF.c Network frames listing (Page F)
PAGETASK.c Task activity listing
PAGEMDMP.c Display memory contents

Ethernet Diagnostics p. 13

